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We have developed a dynamic code solving the standard phenomenological model for eutectic growth,
within the quasistationary approach. This provides us with the capability to follow the dynamic evolution of the
liquid-solid interface, starting from arbitrary initial conditions. Moreover, it is possible to directly simulate
various experimental protocols. Besides broken-parity states we find oscillatory optical (1\; A=periodicity),
and vacillating-breathing (2\) modes. The latter exists not only at off-eutectic compositions, but also at
eutectic compositions. This contradicts previous (approximate) analyses. We also show the possibility of
having experimental access to a branch of states with indented lamellae that we discovered previously within
steady-state computations and which are reachable by the dynamic code. We show the myriad of future
dynamic investigations offered by this analysis and constituting major progress in the field of eutectic growth.

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

When a liquid whose composition is at or close enough to
its eutectic composition is directionally solidified (pulled at a
constant speed in an external thermal gradient) in a thin film
experiment, the solid phase often exhibits an alternating
lamellar organization of the two solid phases. Eutectics con-
stitute a unique nonequilibrium system because they present
a wide technological importance (most mixtures show a eu-
tectic point) and they offer at the same time a very rich area
of generic nonequilibrium manifestations of both static and
dynamical nature.

Since the Jackson-Hunt work [1] showing the existence of
a continuous family of periodic steady-state solutions, con-
siderable progress has been made. Recent theoretical inves-
tigations reported on a myriad of steady-state solutions going
from broken-parity traveling solutions, indented steady-
states (these are solutions exhibiting large pockets and be-
longing to branches of higher undercooling) to disorder
[2—4]. These calculations are based on steady-state consid-
erations. There are, however, many situations where non-
steady growth (e.g., lamellar width oscillations) is observed.
Moreover, steady-state calculations cannot be completely
conclusive about stability. Thus it appeared highly desirable
to develop a time-dependent analysis. Besides the nonlocal
nature of interface dynamics, this problem raises nontrivial
questions related to the dynamics of the three-phase junction
(triple point). This difficulty has been resolved (see below).

Let us briefly present the list of the main results obtained
to date by these considerations. (i) We find, beside broken-
parity states, oscillatory modes. These are of two types: (a)
those which leave the basic spatial wavelength unaltered; (b)
oscillations which lead to a period doubling. (ii) Contrary to
the (approximate) linear analysis of Datye and Langer [5]
and the random walk algorithm by Karma [6], we discover
period-doubling oscillations not only for off-eutectic compo-
sitions, but also for a eutectic composition. (iii) Another im-
portant discovery is that steady-state solutions corresponding
to higher branches obtained by our previous code (the in-
dented solutions), which exhibit a large pocket, are reachable
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by the dynamical code upon an undercooling jump, as we
conjectured previously. At the present state of our investiga-
tion, we can ascertain that these states are long transients and
therefore reachable experimentally. Many other features
which can be investigated by the time-dependent analysis
will be briefly described, and they will be the subject of an
extended communication.

The minimal model for eutectic growth can be cast into
the form of an integral equation, which in the quasistationary
case (valid for small Péclet numbers P=\/l—see last sec-
tion of Ref. [5]; note that in standard experiments
P~10"?) reduces to

du
fr dl"’g(r,r’)E;T:jr dl'" h(r,r',n")u(r')—us],
sl sl
6))

where the integration path I'y; runs along the liquid-solid
interface and where g(r,r’) is a suitable Green’s function of
the operator V2+ V(4d,+tang)d,) (note that tanéd, origi-
nates from the time derivative so that for traveling states we.
are not using the quasi-steady-state approximation, but the
full equation); r,r’ are interface points; A can be calculated
from g via normal derivatives [2]. u=(c¢—c,)/Ac is the nor-
malized concentration field in the liquid (c.: eutectic con-
centration; Ac: miscibility gap). Diffusion in the solid is ne-
glected, i.e., our model is one-sided. V is the pulling velocity
and ¢ an appropriate average of the local tilt angles (with
respect to the z axis) of the solid-solid interfaces at the triple
points.

Equation (1) becomes an integral equation for the inter-
face position {(x,t) by inserting the expressions for the dif-
fusion field and its normal derivative in terms of {(x,?),
which are the Gibbs-Thomson and the Stefan conditions, re-
spectively. The latter is a continuity equation relating the
normal velocity v,, to the concentration gradient at the inter-
face:
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du
‘E“Un,

2
where the exact prefactors are known (see, e.g., [2]) but of
no particular interest in this brief exposition. Finally, to com-
plete the model formulation, we have to impose mechanical
equilibrium conditions at the points where the three phases
meet. For given isotropic surface tensions, these conditions
are simply expressed by the requirement that the contact
angles 6,, 04 take on definite values: 6,=3,, 0g= V.

To translate this into numerics, we employ a discretization
procedure reducing the integral equation to a set of algebraic
equations:

> Gijqj:z Hluj—u.], (3)
J j

where the matrix elements G;; and H;; are integrals on dis-
cretization intervals given, e.g., in [7], while g; and u; are
the discretized normal derivatives and field values at the in-
terface. We employ both an intrinsic representation of the
interface in the manner of McLean and Saffman [8] and Car-
tesian coordinates, switching back and forth between them at
convenience. Note that each of the quantities appearing in
Eq. (1) depends on the interface positions r;=(x;,{;). Given
the interface, the u; are known from the Gibbs-Thomson
condition and G;; as well as H;; are calculable, being deter-
mined by geometry alone. The general strategy [9] for a
dynamic code based on (1) is then very simple: invert G to
obtain the normal derivatives q; and from these calculate the
normal velocities v,,; using (1). Step the interface forward in
time, e.g., according to

r§“ew)=r§°ld)+ Atv,m;, 4)
where At is a small time step and n; the normal vector to the
interface at r;.

‘One problem arises, however: at the triple points, the nor-
mal derivative has jump discontinuities. This has been re-
solved but will be discussed in an extended paper. Moreover,
the three-phase junction at a triple point was allowed to ro-
tate locally, thus enabling changes of the local tilt angle. We
have found it convenient to assign a finite mobility to the
triple points, in such a way that the time scale for mechanical
equilibrium be faster than all other times of interest (in par-
ticular, the time step).

In addition to the normal velocities, we introduced the
gauge-field property of the tangential velocities to keep the
discretization points at roughly equal distances. Here, we
will rather focus on the physical results obtained.

In order to check the code, we first reproduce known re-
sults obtained from steady-state considerations. In the neigh-
borhood of the minimum undercooling the dynamics reach
steady-state symmetric patterns, identical to those obtained
from the steady-state code [2,3]. They are robust against
various perturbations. This shows the stability of these struc-
tures versus hard-mode fluctuations. Another test consists in
taking a symmetric state near the minimum undercooling and
to suddenly change a parameter, e.g., the pulling velocity or
the wavelength. In particular, we found that on quadrupling
the pulling velocity, the pattern normally becomes unstable
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FIG. 1. Appearance of a tilted state upon a velocity jump by a
factor of 4. P=0.14.

with respect to parity breaking, and a tilted state arises. An
example is shown in Fig. 1. In fact, what we have done this
way is to repeat, on the computer, the experiment performed
by Faivre and Mergy [10] after our suggestion [3].

We took this encouraging result as motivation to try and
simulate other experiments on the computer that have not yet
been performed in reality, although we suggested they might
allow interesting observations [11].

The first outcome of our analysis is the detection of higher
undercooling (excitedlike) branches corresponding to in-
dented states. This is achieved by taking an initial ordinary
stable steady state with A>A_;.. We then have applied a
sudden jump in the undercooling. A striking result is that
those branches (found by steady-state considerations), and
which could—illegitimately—be suspected to be unreach-
able dynamically, are captured by the dynamical code. We
could indeed observe indented states as is demonstrated by
Fig. 2. In a real experiment, such a result could be produced
by a simultaneous velocity jump to increase the effective
wavelength. Inspection of the figure shows that, while inden-
tations of the interface build up, they never come to rest, and
the state does not really become stationary; this is presum-
ably a consequence of its instability. Note that the real time
corresponding to Fig. 2 is on the order of seconds, i.e., well
within the range of experimental observability. Thus we have
effectively demonstrated that, other than in hydrodynamics
where instability of a state ordinarily precludes its observa-
tion, the time scales in eutectic growth are slow enough so
that certain unstable states become indeed observable. This
in turn allows a thorough experimental exploration of the
bifurcation diagram. We believe these experiments would be
really worth the effort.

Our next concern is the search for unsteady patterns. Of
particular interest are oscillatory modes. In what follows, we
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FIG. 2. An indented state. P=0.25.

will describe the three most conspicuous oscillatory modes
that we have observed so far.

If the wavelength is taken large enough, in the example of
Fig. 3 about 30% above \;,, the oscillation becomes self-
sustained. In experiments, such an increased wavelength may
be expected in the vicinity of grain boundaries, and oscilla-
tory patterns are indeed often observed to originate there.

FIG. 3. The VB (2\) mode at an off-eutectic composition.
P=0.2.

FIG. 4. A complex oscillatory (2\) mode at the eutectic com-
position. P=0.25.

Figure 3 represents a relatively pure vacillating-breathing
(VB) mode; its characteristic is that one of the two phases—
the one with the thinner lamellae—is essentially ““slaved” by
the other. It vacillates left and right without much changing
its width, whereas neighboring lamellae of the majority
phase get thicker and thinner in phase opposition, represent-
ing the “‘breathing” aspect of the motion. Here we have an
off-eutectic composition (u#.=0.2).

‘What happens at the eutectic concentration where the vol-
ume fractions of both phases become equal (on average) can
be seen in Fig. 4. This spatiotemporal pattern was started in
a very similar way as that of Fig. 3 and initially looked like
a VB mode, too. However, the lamellae of the second phase
are not narrow now; they are more susceptible to developing
their own dynamics. This is not an optical mode (such as the
one shown in Fig. 5) but a period-doubling oscillator with a
relatively complex spatiotemporal signature. Note that the
average undercooling of both the VB mode and the complex
oscillation is very close to that of the original steady state.

Furthermore, we found an optical mode; each lamellar
width oscillates in phase opposition with that of its neigh-
bors, while the basic spatial periodicity is preserved. This
mode was observed as the final state after velocity or under-
cooling jumps that lead only to transient tilted or other inter-
mediate states. Surprising is the fact that these states were
also found at wavelengths between A ,;; and 2\ ;;,, never at
a wavelength below \;,, where they were reportedly seen
in experiments [12]. This discrepancy is unresolved so far.

To conclude, we have found a variety of interesting dy-
namic states by numerical solution of the basic model equa-
tion in the quasistationary approximation. Two of the oscil-
latory states had been known before from experiment; these
are the VB and the optical modes. The more complex oscil-
latory mode has yet to be discovered. To achieve this, a
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FIG. 5. Optical mode at the eutectic composition. P=0.16.

system should be looked at with essentially equal volume
fractions of the solid phases (and as symmetric a phase dia-
gram as possible). In any case, we have demonstrated explic-
itly that neither identical properties of the two phases nor
being at the eutectic composition preclude period-doubling
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oscillations. This contrasts both with the approximate linear
stability analysis of Datye and Langer [5] and a random
walker algorithm by Karma [6]. The lack of these states in
Datye-Langer and Karma’s analyses may be symptomatic of
a deficiency in their underlying assumptions.

Let us finally briefly enumerate the new prospects that the
present analysis offers. (i) We can now study possible tran-
sitions to chaos as we discovered in liquid crystal systems,
where we demonstrated that an interplay between VB and
broken-parity modes leads to chaos [13]. (ii) For extended
systems we can study the evolution of a localized tilted do-
main and its implication on wavelength selection. (iii) The
intriguing results on irrational and disordered patterns we
recently reported on from steady-state considerations natu-
rally lead one to ask whether these states are reached dy-
namically [4]. This will settle important questions as to
whether the system chooses a solution like a crystal, quasi-
crystal, or an amorphous substance. (iv) For large enough
off-eutectic compositions, one usually observes coexistence
of dendrites with lamellar eutectics (coupled zone). The
question which deals with the nature and the precise circum-
stances for the appearance of a coupled-zone growth mode is
fascinating. Although this list is far from being exhaustive, it
is clear that the present analysis opens various new lines of
inquiries with both technological and fundamental impor-
tance.
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